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Abstract
For a discrete excited state coupled to a continuum, we prove that the positions
of the resonances are, in general, multivalued functions of the coupling constant
and the width of the continuum, even if these parameters are real. In such a
model, taken from quantum electrodynamics, if the spatial extension of the
discrete state is above a certain value, we prove that the bound state which
appears has little to do with the excited state. For more general coupling
constants, we bring some new information about the behaviour of the resonance
corresponding to the excited state when the coupling constant is increased.

PACS numbers: 11.10.−z, 02.30.−f, 02.60.−x

1. Introduction

Many studies are devoted to ‘non-perturbative’ questions. The present study falls into that
category. However, the word ‘non-perturbative’ may refer to several different things. Non-
perturbative properties may be seen as properties which cannot be seen on truncated expansions
of various quantities in powers of the coupling constant. For example, the existence of poles of
the sum of the series (renormalons, see for instance [1]), or quantities impossible to calculate
with such an expansion which vanishes trivially (the energy shift in the double-well problem,
see for instance [2]). The word non-perturbative may also be used to refer to the exact
determination of the quantities without limitation to any order of their expansions in powers
of the coupling constant. This is the case for the exact determination of resonances close
to the unperturbed energy level, in atom–radiation interaction with small coupling constant
(see [3, 4]). Another example is the non-perturbative approach of radiative decay of [5].
One can also consider as non-perturbative effects which only occur, or are only significant,
when the coupling constant is large. The appearance of stable states in a two-level system
strongly coupled to a field is an example of such effects (see [6–9], [16, section CIII.6]).
Our previous studies on the subject [10–15] and the present one are concerned with those
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kinds of phenomena, although they also yield results in cases where the coupling is small
[11]. Indeed, these studies led us to think that the perturbative description, in the sense of a
description extrapolated from the description at vanishing coupling, of the states of a quantum
system coupled to radiation does not reflect the full structure of the resonances of the global
system, which is far richer. This may remind us of the quantum mechanical problem of the
double-well, where the degeneracy induced by the two minima complicates the perturbative
treatment of the eigenvalue problem (see for instance [2]).

We resume our previous studies on a very simple two-level model, so as to make the
description and variation of the resonances in the complex plane more precise, for arbitrary
changes of the coupling constant.

This model of a discrete state coupled to a continuum is presented in [16]. Let us denote
this state by |2〉. Its energy is E, set equal to 1 later on. The system may emit a boson with
momentum p and go to the fundamental state denoted by |1〉; its energy is supposed to be 0.
We set 〈1, p|H |2〉 = λg(p). Two parameters are important in this problem: the continuum
width, i.e. the width of g, and the coupling constant λ. The coupling also depends on the shape
of the normed coupling function g(p). The fundamental state energy of the decoupled system
remains an eigenvalue of the coupled system Hamiltonian. When the coupling is small, but
the smallness depends on g, the first excited state energy E is slightly shifted into the complex
lower half-plane. Its position is, to first order in λ,

E − 2λ2P
∫ ∞

0

[g(p)]2

p − E dp − 2iπλ2[g(E)]2. (0)

When all orders are taken into account, the displaced (complex) energy is the zero near E of
the analytic continuation, with respect to z, into the lower half-plane of f (λ, 1, z), with

f (λ,µ, z) := z− E − 2λ2
∫ ∞

0

[g(p)]2

z− µp dp. (1)

This expression for f (λ, 1, z) comes from the summation of the series in λ for
〈2|[z−H ]−1|2〉 = f (z)−1 (see [16], for instance formulae (6) and (7) of CIII). The correction
to E is the radiative correction corresponding to the sum of all diagrams of the form

λg(p) λg(p)

p

|2〉 |1〉 |1〉 |1〉|2〉 |2〉 |2〉

An important point is that f (λ, 1, .) (or f (λ,µ, .)) has at least another zero, beyond this
‘perturbative’ one. We started a systematic study of both zeros in previous works.

The main feature of the result of the present paper is that both zeros are to be put on the
same footing. They may be transformed into one another by real changes in the parameters, λ
and the width of the coupling function g, in the same way as the two solutions of a second-order
equation depending on a parameter can transform into one another by a analytic change of the
parameter. Another way of presenting the result of the paper is to say that the zero commonly
affected to the excited state and the zero which is the energy of the stable state mentioned
before, studied in strong coupling situations [6, 16], may be identical or not. This indicates a
departure from the ‘perturbative description’.

We will see that studying this question inevitably leads to consideration of the positions
of resonances or bound states as analytic functions of the two above-mentioned parameters.

In previous papers [10, 12], we studied zeros of such functions by following their
displacements in the complex plane as a parameter µ varies. This parameter is related to
the continuum width (width of g). Focusing on the dependence on this width proved useful
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Figure 1. Type of µ-dependence of four zeros of f̂ , for three different values of λ.

for exhibiting zeros which are not so easily taken into account when the only λ-dependence
is considered. In the present paper, we study the positions of the resonances/bound states
as functions of these two parameters λ and µ. We show that they are multivalued functions,
possibly branches of a unique function, even when the variables are real.

With regard to possible physical applications, we discuss the behaviour of the resonances
as the coupling constant increases. In fact, the dependence on λ of the ‘perturbative’ zero was
not a completely solved problem, up to now. In a model where the coupling constant is small,
strongly related to QED, we also discuss the behaviour of the resonances as the width of the
continuum changes, completing the results of [11]. This change can be performed by varying
some physical parameters. The question of finding physical models in which the various types
of resonances we exhibit could be studied is now opened.

We start in section 2 with general properties of the zeros giving resonances. Their
dependence upon the parameters is then illustrated with numerical examples in section 3.
Section 4 is devoted to a discussion of two cases, one in weak coupling, taken from quantum
electrodynamics, and the other in strong coupling. The important points for possible
applications are stated in propositions 4–6.

2. Resonances and bound states, for a discrete state—mathematical analysis

Let us consider f (λ,µ, z), the function defined by (1) with E = 1, for µ �= 0 and
µ−1z /∈ R+ ∪{0}. g has the properties enumerated below. Quantities z, 1 and p are energies, λ
and µ are dimensionless parameters. In this paper, we are interested in the zeros of f (λ,µ, .)
and its analytic continuations (figure 1). Some of these zeros, among which is the one close to
1 when λ is small, may be obtained by continuity, starting from the zeros for µ = 0. A study
of the µ-dependence of the zeros can be found in [10].

That the parameter µ is related to the width of the continuum can be seen by changing
the integration variable which changes (1) into

f (λ,µ, z) = z− 1 − 2λ2
∫ ∞

0

[gµ(p)]2

z− p dp (1′)

where gµ(p) := µ− 1
2 g(µ−1p) is the function obtained from g by the scaling p → µp of the

variable. We thus get all possible values of µ in (1) by considering in (1′) a family of functions
gµ obtained from a unique g by scaling (see also [13]). Function (1′) is precisely the function,
a zero of which gives the excited level complex energy when the coupling is λgµ, g being real.
The width of the coupling function is variable. The smaller µ, the smaller the width is.
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We suppose that g has the following properties:

• g is rational with non-real poles πi .
• g ∈ L2(R+), ‖g‖L2(R+) = 2−1/2, C := 2

∫ ∞
0 p−1g2(p) dp <∞

• g(0) = 0.
• |pg(p)| is bounded forp ∈ C, |p| > 2 supi |πi|. This constraint will possibly be removed.

Let us note that these properties are satisfied by the electromagnetic matrix elements given
in [17], for example by (8) (formula (3) of [17]), in the case of the hydrogen atom.

For z = 0 and µ �= 0, formula (1) gives f (λ,µ, 0) = −1 + µ−1λ2C.
We set µc(λ) := Cλ2 and λc(µ) := {λ;µ = Cλ2}. If µ > 0, we set λ±

c (µ) := ±C− 1
2µ

1
2 .

µ = µc(λ), or λ ∈ λc(µ) is a necessary and sufficient condition for f (λ,µ, .) to vanish at
0. For example, if µ = 1, one of the resonances will have energy zero and also a vanishing
imaginary part for λ = λc(1). It is a transition value of the coupling constant, called critical
coupling in [16]. We will meet another singular point λ∗(1) later on, and also λ∗ (figure 2, see
section 4.2 for the meaning of S and NS).

Let F(λ,µ, .) be the multivalued function obtained by analytically continuing f (λ,µ, .).
In order to investigate the analytic properties of the zeros of F, we must give the analytic
properties of F itself.

Lemma (Analytic properties of F(λ,µ, z), as a function of three complex variables).

(a) Firstly, let (λ, µ) be fixed.
For λ �= 0, µ �= 0, f (λ,µ, .) can be analytically continued in C\{0}. It defines a
multivalued function having z = 0 as a branch point. The only possible other singularities
of the various branches are poles at z = µπi .
f (0, µ, z) = z − 1.
z → f (λ, 0, z) = z − 1 − λ2

z
is defined for all z �= 0 and is holomorphic in C\{0} for

all λ.
(b) Secondly, let (µ, z) be fixed.

Let us suppose that f or one of its continuations is defined. Then the function is entire in
λ. (For µ �= 0, the function is defined for all z; for µ = 0 it is defined for z �= 0.)

(c) Lastly, let (λ, z) be fixed, with λ �= 0.
If z = 0, f (λ, ., z) is holomorphic in C\{0}.
If z �= 0, f (λ, ., z) defines a meromorphic multivalued function in µ, certain branches of
which have poles π−1

i z, and having 0 as a branch point.

Proof. Most of the assertions are trivial. To see point (c), let

ϕ(ζ ) :=
∫ ∞

0

g2(p)

ζ − p dp (2)
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so that

f (λ,µ, z) = z− 1 − 2
λ2

µ
ϕ

(
z

µ

)
. (3)

Function ϕ has ζ = 0 as a branch point and poles πi of g as poles. Therefore, the singular
values of f (λ, ., z) are µ = π−1

i z, on one hand, and µ = 0, which is a branch point, on the
other hand. This last point follows from the fact that if µ = ε eiθ , z

µ
= z

ε
e−iθ performs a

complete turn around 0 when θ varies from 0 to 2π , which changes the value of ϕ(z/µ). �

Notation. ϕ(λ,µ, .) and f (λ,µ, .) are obviously defined by (2) and (1) in the plane cut along
R+. The equation f (λ,µ, z) = 0 for z is the equation for the eigenvalues of the Hamiltonian
coupling the two-level system to the field. It has no solution outside the real numbers, as the
Hamiltonian is Hermitian. But when λ increases from 0, not becoming too large (see later on),
it is known that the unperturbed eigenvalue 1 is pushed into the lower half-plane, to a point in
the second sheet. Let us denote this point by z2 (the index 2 is chosen here so as to avoid any
confusion later on). We get the following behaviour when t → ∞ for the evolution-operator
matrix-element

〈e|U(t)|e〉 =
∫
C−

〈e|[z−H ]−1|e〉 e−itz dz ∼ e−t|Im z2|

Im z2 being thus related to the life-time of the state |2〉. Therefore, we will mostly be interested
in the continuation which is defined in the plane cut along R−, from values in the upper half-
plane. (The upper part of the cut is included.) We will denote these functions by ϕ̂(λ, µ, .)
and f̂ (λ, µ, .). Incidently, it is to be kept in mind here that we do not exclude real eigenvalues
of the Hamiltonian (see [6, 9]). This will be explained later on. If Im z < 0, we have

f̂ (λ, µ, z) = f (λ,µ, z) + 4iπ
λ2

µ
g2

(
z

µ

)
. (3′)

Let us consider in (C\{0})3 the following system of equations in (λ, µ, z):{
z− 1 − 2 λ

2

µ
ϕ̂
(
z
µ

) = 0

ϕ̂′( z
µ

) − µ2

2λ2 = 0.
(�)

It defines the singular solutions of (1). (�) is equivalent to a system of four real equations
for six real unknown variables, the real and imaginary parts of λ,µ and z. We are going to
examine three cases in which the number of real unknown variables is reduced to four. In the
first one λ is fixed (section 2.1 and numerical example of section 3.5). In the second one, µ is
fixed (section 2.2 and examples of section 3.4). In the third one, we require λ and µ to be real
(section 2.3, sections 3.2 and 3.3).

We now come to the analyticity properties of the position of the resonances, the zeros of
F(λ,µ, .).

2.1. Some singularities µ∗
i (λ) of the zeros, λ being fixed

Definition. We fix λ and denote by {(µ∗
i (λ), z

∗
i (λ)); i = 1, . . . , k} the set of solutions

for (�) in (C\{0})2. We suppose that it is a discrete set containing k elements and set
µ∗
i=1,...,k(λ) := ∪i=1,...,kµ

∗
i (λ).

Proposition 1 (Analyticity of the zeros of f (λ,µ, .) with respect to µ). Let λ be fixed in
∈ C\{0}.
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Let µ0 ∈ C satisfy µ0 �= µ∗
i (λ), µ0 �= 0 and µ0 �= µc(λ). Choose z0 such that

F(λ,µ0, z0) = 0.
Then we can extend this zero locally, that is to say there exist a neighbourhood Vλ(µ0)

and a function µ → znull(λ, µ) analytic in Vλ(µ0) such that F(λ,µ, znull(λ, µ)) = 0 for all
µ in Vλ(µ0) and znull(λ, µ0) = z0.

Globally, this zero can be analytically continued as a function of µ along any path in
C\{0, µ∗

i=1,...,k(λ), µc(λ)} into a function znull(λ, .) satisfying F(λ,µ, znull(λ, µ)) = 0.

By following the variation with respect to µ of any zero znull(λ, µ0), for
µ0 ∈ C\{0, µ∗

i=1,...,k(λ), µc(λ)}, this enables us to define a function holomorphic in
C\{0, µ∗

i=1,...,k, (λ), µc(λ)}, possibly branching at µ∗
i (λ), µc(λ), 0.

Proof. The first part of the proof is a consequence of the fact that z0 necessarily differs from
the poles µ0πi , and from 0, since µ0 �= µc(λ). Then, µ0 being different from 0, f (λ,µ, z) is
holomorphic inµ in a neighbourhood of (µ0, z0) from (c). Besides, f (λ,µ, z) is holomorphic
in z in a neighbourhood of (µ0, z0) from (a). Lastly, since

∂zf (λ,µ, z) = 1 − 2λ2

µ2
ϕ̂′

(
z

µ

)
(4)

andµ differs from the singular valuesµ∗
i (λ), then ∂zf (λ,µ0, z0) �= 0 holds. Consequently, the

implicit function theorem applies. It yields the local existence of znull(λ, .). Let us now prove
the second part. Let us assume that znull(λ, .) is analytic in a discDr(µ0) aroundµ0, with radius
r and contained in C\{0, µ∗

i=1,...,k(λ), µc(λ)}. Let γ be a path in C\{0, µ∗
i=1,...,k(λ), µc(λ)}.

Choose µ′ ∈ Dr(µ0) ∩ γ . We repeat the preceding argument, replacing (µ0, z0) by (µ′, z′).
Thus, we get a new neighbourhoodV ′(µ′) and the function znull(λ, .) is analytically continued
in V(µ0)∪ V ′(µ′). The point is to show that the process may be carried out up to any point at
a finite distance in C\{0, µ∗

i=1,...,k(λ), µc(λ)}. This is done by copying the argument in [10],
replacing the Hurwitz theorem by the implicit function theorem, since the latter now applies
for the values of µ we now consider. In short, the reasoning is as follows: should we come up
in the step-by-step construction against a limit point which is not the end of the path, this point
would nevertheless be regular and it would then still be possible to perform the construction
beyond it. �

That some µ∗
i (λ)’s are indeed singularities of the functions thus defined will be seen in

the numerical examples of section 3.
We now allow the starting point of the µ-variation to be 0 and obtain the essential point

in our construction.

Corollary. (Two particular zeros of F(λ,µ, .)).
Choose λ �= 0 and set d(λ) := 1

2 (
√

1 + 4λ2 − 1).
Let µ0 be a point in C\{0, µ∗

i=1,...,k(λ), µc(λ)}.
Let γ be a path in C\{0, µ∗

i=1,...,k(λ), µc(λ)} joining 0 to µ0. (Note that this path may turn
once or several times around the origin, or around the other singular points µ∗

i (λ), µc(λ).)

The two zeros

z0(λ, 0) := −d(λ) z1(λ, 0) := 1 + d(λ)

of f (λ, 0, .) can be continued for µ ∈ γ as two functions of µ, holomorphic at any point
µ �= 0. Analytic continuations along two homotopic paths give the same result.

Proof of the corollary. Firstly, we apply the Hurwitz theorem for µ ∈ γ ∩ V , V being a
small neighbourhood of µ = 0. We thus get two zeros for µ on the path near 0, coinciding
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respectively with z0(λ, 0) and z1(λ, 0) forµ= 0. Let us denote them by z0(λ, µ) and z1(λ, µ).
(It is not possible to use the implicit function theorem at µ′ = 0 because f is not differentiable
with respect to µ at this point.) The preceding proposition then allows us to analytically
continue these zeros. �

Remark about the notation. We will still denote these zeros by

µ→ z0(λ, µ) and µ→ z1(λ, µ)

for non-small values of µ, but, from now on, in a special case. Without such a precaution,
the notation might lead to inconsistencies, due to the multivaluedness of the functions, a
point we will be developing in section 3. From this property it indeed follows that z0(λ, µ),
analytically continued around a branch point such as µ∗

i (λ), may change into the principal
branch of z1(λ, µ), or some other zero. The case in which the above notation will be used
is, except in section 3.5.1, the following: µ0 will be real positive, different from µc(λ) and,
for λ = λ∗

1 (see section 2.3), will be smaller than µ∗
1 (section 2.3). The µ-path will be real,

unless it encountersµc(λ), in which case it will avoid this point by going round along a small
half-circle in the upper half-plane.

It is very important to note that here λ is fixed. When the λ-dependence of the zeros
of F(λ,µ, .) is discussed, we will introduce a different notation, namely ξnull(λ, µ), for the
zeros.

2.2. Some singularities λ∗
i (µ) of the zeros, µ being fixed

Definition. Let us denote by {(λ∗
i (µ), z

∗
i (µ)); i = 1, . . . , k′} the set of solutions for (�) in

(C\{0})2. We again suppose that this set has a finite number of elements, say k′.

Proposition 2 (Analyticity of the zeros with respect to λ).
Take µ ∈ C\{0}.
Choose λ0 ∈ C\{0} such that λ0 �= λ∗

i (µ), i = 1, . . . , k′ and λ0 /∈ λc(µ).
Choose z0 such that F(λ0, µ, z0) = 0. Then we can extend this zero locally, that is to say
there exist a neighbourhood Wµ(λ0) and a function λ → ξnull(λ, µ) analytic in Wµ(λ0) such
that F(λ,µ, ξnull(λ, µ)) = 0 for all λ in Vµ(λ0) and ξnull(λ0, µ) = 0.
Globally, this zero can be analytically continued as a function of λ, along any path in
C\({0, λ∗

i=1,...,k(µ)} ∪ λc(µ)), into a function ξnull(., µ) satisfying F(λ,µ, ξnull(λ, µ)) = 0.

It is unavoidable to introduce the new notation ξnull(., µ) in order not to let the reader
believe that the continuation of z0(λ, µ) from λ to λ′ is z0(λ

′, µ). We will see that the
continuation may be z1(λ

′, µ). Moreover, we find the same difficulty as with theµ-dependence
in giving names to the different zeros.

Proof. The first part is proved in the same way as the first part of proposition 1. f (λ,µ, z) is
holomorphic in (λ, z) in the neighbourhood of (λ0, z0) and ∂zf (λ0, µ, z0) �= 0. Therefore we
can define ξnull(., µ) in the neighbourhood of 0.

As regards the second part, the line of the proof is the same as that of proposition 2. Let
us consider a path in the λ complex plane, starting at λ0 and ending at a point we call λe. Let us
assume that γ does not meet any of the points 0, λ∗

i (µ), λ
±(µ). As in the µ-variable case, step

by step, we construct an extension ξnull(λ, µ) around a sequence λ0, λ1, . . . of points along γ .
We have ξnull(λ0, µ) = z0 and set ξi := ξnull(λi, µ). Let us forget µ in the notation. Suppose
that the λi accumulate on a point λlim �= λe. The hypotheses on g imply that ϕ, defined by
(2), is bounded for sufficiently large ζ (see lemma 1 in [10]) and thus that the ξi are bounded.
Therefore they have a limit point ξlim. That ξlim is not a pole of F(λlim, µ, .) results from (3).
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From the choice of γ , ξlim �= 0. From the continuity of F in (λ, z) wherever F is defined, we
get F(λlim, µ, ξlim) = 0. Since F(., µ, .) is analytic in a neighbourhood of (λlim, ξlim) and
(∂zF )(λlim, µ, ξlim) �= 0, one can again use the implicit function theorem to define ξnull(λ)

beyond λlim. �

That some λ∗
i (µ) are indeed singularities will be clear with the numerical examples of

section 3.
The situation here is somewhat different from that we had when µ was the variable.

Indeed, if we start with the value λ = 0, we can only follow one zero, since there is only one
that equals 1. However, when λ equals λ0 and after we have obtained two zeros by means of
theµ-variation, we can use the preceding proposition to follow the zeros when λ varies. This is
indeed the essential point in the method used in [10–15]; the method is non-perturbative in the
interaction at the very beginning. We thus obtain a function in C\({0, λ∗

i=1,...,k(µ)} ∪ λc(µ))
that possibly branches at points in {0, λ∗

i=1,...,k} ∪ λc(µ).
Let

Sc := {(λ, µ) ∈ (C\{0})2;µ = Cλ2}
�∗ := {(λ, µ) ∈ (C\{0}2); ∃z s.t. (λ, µ, z) is a solution for (�)}.

Gathering the results of propositions 1 and 2, we finally get the following method for finding
and following zeros of f (λ,µ, .).

By following zeros of f (λ,µ, .), first when µ varies starting from 0, then when λ
varies, we possibly get multivalued functions of two complex variables λ,µ, defined in
(C\{0}2)\(Sc ∪ �∗). This is beyond the scope of the present paper to prove or even discuss
theoretically whether these different functions are different branches of a unique multivalued
analytic function. The numerical examples in section 3 are a step in that direction.

The method we proposed in [10] for getting zeros of f (λ,µ, .) is essentially the same as
that presented here. It differs only in that it coped with possible multiple zeros, and to do that,
we had to lose precision on the results. The possibility of multiple zeros is now excluded by
the choice of the paths γ , thanks to the proposition that follows. Moreover, the present study
also brings information about the analyticity of the zeros that was not present in [10].

Proposition 3 (Necessary condition for getting a multiple zero). Let us suppose that we have
followed a certain zero znul(λ, µ) by the method explained in [10], whenµ varies up toµ0 > 0,
µ0 �= µc(λ). We have thus continued znul(λ, µ) in the plane cut along R−. Let us suppose that
znul(λ, µ0) is a multiple zero. Then (λ, µ0, znull(λ, µ0)) is a solution for (�) and, generically,

lim
µ→µ0

|∂µznul(λ, µ)| = ∞ lim
µ→µ0

|∂λznul(λ, µ)| = ∞.

Proof. If the zero is multiple, then ∂zf̂ (λ, µ0, znull(λ, µ0)) = 0, given that if that quantity was
not 0, there would be a local isomorphism µ → zi(λ, µ), according to the implicit function
theorem. Thus (λ, µ0, znull(λ, µ0)) ∈ �∗.

Besides, one has(
ϕ̂′

(
znul(λ, µ)

µ

)
− µ2

2λ2

)
∂µznul(λ, µ) = ϕ̂

(
znul(λ, µ)

µ

)
+
znul(λ, µ)

µ
ϕ̂′

(
znul(λ, µ)

µ

)
(5)

(
ϕ̂′

(
znul(λ, µ)

µ

)
− µ2

2λ2

)
∂λznul(λ, µ) = −2µ

λ
ϕ̂

(
znul(λ, µ)

µ

)
. (6)

The right-hand side of (5) equals (2znul(λ, µ) − 1)µ/(2λ2) and the right-hand side of (6)
equals −µ2

λ3 (znul(λ, µ)− 1), for solutions of (�). The proposition is proved if these quantities
do not vanish, which is the case for generic g. �
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2.3. ‘Absolute’ singularities λ∗
i and µ∗

i of the zeros

Definition. We denote by (λ∗
i , µ

∗
i , z

∗
i ) the set of solutions for (�), when λ and µ are required

to be real. We again assume that it is a discrete set. We use the term ‘absolute’ in order to
point out that these numbers do not depend on anything else than the shape of g. They are not
changed by a dilation of that function. They are pure real numbers.

Let us suppose that λ andµ, considered in sections 2.1 and 2.2, are real. Then if λ is fixed
and different from the λ∗

i , µ > 0 is necessarily different from the µ∗
i (λ). As a consequence,

z0(λ, µ) and z1(λ, µ) are indeed defined on any ‘real’ path (inverted commas indicate that
the path may have to go round µc(λ)) followed by the µ-variable. If λ = λ∗

i for a certain i,
the situation is less simple. We will postpone its description until we have given numerical
examples in the following section.

Note here that this singular value µc(λ) is not to be confused with µ∗
1. µc(λ) is a value

above which z0 acquires a non-zero negative imaginary part, when µ alone is varied, λ being
fixed. For µ < µc(λ), the eigenvector corresponding to the real negative eigenvalue has the
form

|2〉 ⊗&bos + |1〉 ⊗ h(λ,µ)
where &bos is the vacuum state and h(λ,µ) is a 1-boson state to be determined. Nothing
special occurs for z0 when µ is varied through µ∗

1.

3. Numerical examples

It seems difficult to solve (�). Therefore, it is difficult to describe the analyticity properties
with respect to (λ, µ) of the zeros precisely for general g. We will limit ourselves in the
rest of this paper to illustrations through examples and numerical calculations. They already
give important information on the branch points of these functions, in particular real ones.
Numerical values of interest for physical problems can already be obtained.

3.1. The functions g

Let us assume that g is real on the real line; thus |g(p)|2 = [g(p)]2 and (1) is indeed the
function which gives the energy shift of the ‘excited’ level resulting from the coupling to the
field via the coupling function g.

Assuming also that the poles are simple, that is to say that

g(p) =
∑
i

(
ai

p − ui +
āi

p − ūi

)

we then get an explicit expression for f+ by means of the functions we now define. For
Imu �= 0, ζ /∈ R

+ ∪ {0} and ζ �= u,

huu(ζ ) :=
∫ ∞

0

1

(p − u)2
1

ζ − p dp = log(−ζ )− log(−u)
(ζ − u)2 +

1

u(u− ζ )
and for u �= v, Imu �= 0, Im v �= 0, ζ �= u, ζ �= v

huv(ζ ) :=
∫ ∞

0

1

(p − u)(p − v)
1

ζ − p dp

= log(−ζ )
(ζ − u)(ζ − v) +

1

u− v
(

log(−v)
ζ − v − log(−u)

ζ − u
)
.



2658 C Billionnet

Some calculations may then be quickly performed on machines if g has only two (non-real)
poles. Let us denote the one in the lower half-plane by u, the other one being ū. Let us suppose
that a = α

(
1 − Reu

Im u i
)
, α ∈ R+, so that g(0) = 0 holds. Let us also choose α in order that

‖g‖2 = 1. Then, for ζ /∈ R
+,

ϕ(ζ ) = a2huu + 2|a|2huū + ā2hūū.

In what follows, most of the time we will consider u to be −i and, consequently, a = 1√
2π

and

g(p) =
√

2

π

p

1 + p2
. (7)

A more realistic shape for g can be obtained from the electromagnetic matrix elements given
in [17]; with a dimensionless s, it is

g(s) = 4√
π

s

(1 + s2)2
. (8)

The pole is not simple.

3.2. The case where the poles of g are ± i; study of the zeros, as functions of real λ and µ
(except for µ ∼ µc(λ))

We have

ϕ(ζ ) = r1(ζ ) log(−ζ ) + r2(ζ )

where

r1(ζ ) := 1

2π

(
1

(ζ + i)2
+

2

(ζ + i)(ζ − i)
+

1

(ζ − i)2

)

r2(ζ ) := i

4

(
1

(ζ − i)2
− 1

(ζ + i)2

)
+

1

ζ + i

(
1

4
− i

2π

)
+

1

ζ − i

(
1

4
+

i

2π

)
.

These expressions, together with (2), give expressions for f (λ,µ, z). Others can be found in
[13, formulae (5)–(7)].

We saw that the resonances were constructed by nailing down the coupling constant and
varyingµ along some paths starting from 0. These paths have to avoid singularities which are
solutions of (�). We thus have to solve that system.

But this amounts to solving a transcendental equation of the form log(ζ(λ, µ)) =
r(ζ(λ,µ)) for ζ(λ,µ) = µ−1 znull(λ, µ); here r is a rational function with polynomial
coefficients in λ and µ, and ζ(λ,µ) is a solution of an algebraic equation, with polynomial
coefficients in λ and µ. We will limit ourselves to an empirical search for solutions on a
computer. Let us first examine the case which seems the most interesting physically, namely
the one where λ and µ are both real. However, let us note that it is convenient to give µ a
small imaginary part near µc(λ).

3.2.1. Real singular values of the coupling constant and of the continuum width. A solution of
(�) obtained by computer is

λ∗
1 = 0.504 84 µ∗

1 = 1.081 08 z∗1 = 0.752 92 − 0.471 43i.

We cannot say at the moment whether there are others or not. When u = 1 − i, at least one
other solution does exist (see section 3.3). We are going to see that these values are particularly
important in order to be able to follow the displacements of the zeros when λ and µ vary.

The displacement of the resonances is now described concretely in an example. We will
see how they interchange. Variation with µ is considered first. We then show the variation
with λ, according to the paths in the (λ, µ)-plane drawn in figure 5. The reader may find it
helpful to look directly at figures 3–7.
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-0.25 ←

↓ µ increases

µ = µc(0.5)→

z0(0.5, µ) z1(0.5, µ)

Figure 3. Variation in µ of the resonance positions ((Re(z), Im(z))), for λ = 0.50.

0.2 0.4 0.6 0.8 1 1.2

-1.75

-1.5

-1.25
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-0.25 →

↓ µ increases

µ = µc(0.51)→

z0(0.51, µ) z1(0.51, µ)

Figure 4. Variation in µ of the resonance positions ((Re(z), Im(z)), for λ = 0.51.

3.2.2. Construction, notation and analyticity properties of two resonances. Let us first
suppose that λ is fixed at a real value not equal to any of the λ∗

i . It will vary in section 3.2.3.
We may then use the corollary of proposition 1 and section 2.3 to construct two resonances,
for a given positive real valueµ0 ofµ, through variation ofµ on the reals (except possibly near
µc(λ)). The principle of that construction was sketched in [10] and recalled in the previous
pages. The present study brings complements, for example, with regard to the analyticity of
their dependence on α := (λ, µ).

Two cases have to be distinguished according to whether µ0 is greater or smaller than
µc(λ).

(i) Let us suppose that µ0 > µc(λ). All paths joining 0 to µ0 along the reals, except near
µc(λ) where they follow a small half-circle in the upper half-plane, are homotopic in
C\{µ∗

i (λ), µc(λ)}, provided the radius of the circle is sufficiently small. Homotopic
means that they can be transformed continuously into one another. The consequence of
the corollary of proposition 1 and of section 2.3 is that the two zeros z0(λ, 0) and z1(λ, 0)
may be continued in a unique way as analytic functions z0(λ, .) and z1(λ, .) in some
neighbourhood of these paths. At the end of section 2.3, we recalled that z0(λ, .) is a real
negative number as long as µ stays smaller than µc(λ). It would tend to 0 if µ reached
µc(λ). As it goes round this point, z0(λ, µ) goes round 0 clockwise to be in the lower
half-plane for µ = µc(λ) + ε. z1(λ, µ) starts from 1 and remains in the lower half-plane.
The positions of the two zeros for the values of µ in [µc(λ), 2] are given in figures 3 and
4, respectively, for λ = 0.50 and λ = 0.51, two values on either side of the critical value
λ∗

1. We have µc(0.50) � 0.159, µc(0.51) � 0.166 and

lim
µ→0

z1(λ, µ) = 1 + d(λ) lim
µ→µc(λ)

z0(λ, µ) = 0.
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1
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0β ’

α ’

γ

γ ’

variation of µ which defines z1(0.6, µ)

variation of µ which defines z1(0.4, µ)

variation of λ
which changes
z1(0.4, 1.2)
into z0(0.6, 1.2)

variation of λ which transforms
z1(0.4, 1) into z1(0.6, 1)

µ

Figure 5. Different paths in the (λ, µ)-plane for constructing resonances.
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-0.4

-0.3

-0.2

-0.1
z1(α1)

z0(β1)

z0(α1)
z1(β1)

z0(α′
0) = z0(β′

0) = 0
↓

a b

dc e f

Figure 6. Variations of the resonance position, first with respect to µ up to µ0 = 1 < µ∗
1 (bold

lines), then with respect to λ (dotted lines).

In these figures it can be seen that the two zeros do not cross. As we said before, the
absence of crossing allows the notation.

If λ = λ∗
1, there is a double point for µ = µ∗

1, and thus an ambiguity in the notation of
the zeros for µ > µ∗

1. In any case, as proved in [10], two zeros still exist for µ > µ∗
1.

(ii) If µ0 < µc(λ), the difficulty about z0(λ, µ) going to 0 for µ = µc(λ) does not occur.
z0(λ, µ0) is in fact a bound state.

Remarks. Graphs in figures 3 and 4 are obtained for a discrete set of values of µ, and the
spreading which can be seen near 0.75 − 0.5i indicates that the derivative with respect to µ
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Figure 7. Variations of the resonance position, first with respect to µ up to µ0 = 1.2 > µ∗
1 (bold

lines), then with respect to λ (dotted lines).
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-0.4

-0.2

E F

ξ1(λ+
c , 1)

ξ1(0, 1)ξ0(λ+
c , 1) = 0

ξ0(0+, 1)

Figure 8. Variations of the resonance positions with respect to λ, for µ = 1 < µ∗
1.

of the function is getting large. This is in line with proposition 3. Besides, when µ goes to
infinity, it can be shown that the zeros enter one of the two cones with arbitrary small aperture
containing either R+ or u.

Of these two resonances, one is of course the one we are used to from the perturbative
point of view. But this point of view depends on a variation with respect to λ, and we cannot
tell which of these resonances we have just obtained corresponds to the excited level until we
have discussed the λ-dependence. Let us now examine this question.

3.2.3. Variation with respect to λ (possible resonance interchange). We are going to see
a third reason to get interested in arbitrary values, even complex values, of µ. Studying the
variation with respect to λ, after that with respect to µ, will reveal a multivaluedness and the
following related surprising property:

The behaviour of the resonances as λ varies depends on whether µ is smaller or greater
than µ∗

1.
We are going to show (in figures 6 and 8) that if µ is fixed at a value lower than µ∗

1, the
negative energy stable state which appears when λ increases (see [16]) does not come from
the resonance close to 1 when λ is small, but from another one (close to the pole u = −i of g).
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Figure 9. Variations of the resonance positions with respect to λ, for µ = 1.2 > µ∗
1.

When µ is fixed at a value higher than µ∗
1, it does come from this resonance (close to 1

whenλ is small), contrary to what was suggested by the following sentence in [13], section 3.3:
‘our study seems to indicate that the zero of f1 which becomes real negative when λ increases
from 0 to a value greater than λc(µ) is z0(λ, µ) rather than z1(λ, µ)’. The statement is correct
if µ1 > µ

∗
1 and false if µ > µ∗. In [16], it is indeed because the width is supposed to be large

(formula (43) of CIII.6) that it is the discrete state which has been turned into a stable state
when the coupling constant is increased (see end of CIII.6).

Let us point out that figure 3 in [13] may be misleading in that it may let one think that
the position of the resonances z0 and z1 is a (univalued) function of (λ, µ), which is only true
if µ is below the critical value µ∗

1 (for example if µ = 1).
Let us examine this question in detail in the case u = −i.
Let us fixµ at a valueµ0 close toµ∗

1 but different fromµ∗
1. Let us consider the variation of

the zeros z0(λ, µ0) and z1(λ, µ0)with respect to λ, from a real starting value λ0, distinguishing
the two cases according to whetherµ0 is smaller or greater than µ∗

1. We will successively take
µ0 = 1 and µ0 = 1.2, and consider λ varying in an interval containing the singular value λ∗

1.
Let us underline the fact that, finally, the zeros have been followed first in µ from 0
to µ0, λ being fixed at λ0, then in λ, starting from λ0. Figure 5 shows the variation
paths of the parameter α := (λ, µ) in R2. The bold printed segments correspond to µ-
variations, and those with dashed lines to λ-variations. This format is also used in figures 6
and 7, with dotted lines replacing dashed ones. The discontinuity on the segment α0α1

(resp. β0β1) at α′
0 (resp. β ′

0) indicates that µ must go round the point µc(0.4) (resp. µc(0.6))
in the upper half-plane.

Paths followed by the zeros in connection with these variations of λ and µ are shown in
figures 6–9. Let us comment on these figures.

(i) µ0 = 1 (figures 6 and 8).

Notation: α1 := (0.4, 1) and β1 := (0.6, 1). We have λ+
c (1) � 1.25.

– Obtaining zi(α1) and zi(β1) by varying µ (bold lines in figure 6). z0(α1) and z0(β1) are
obtained through the analytic continuation along a path joining 0 to 1 in the µ-space, a
path following the real axis but going round µc(0.4) (resp. µc(0.6)). For µ = 0, the zero
is z0(0.4, 0) (resp. z0(0.6, 0)), and at the end of the path, it is z0(α1) (resp. z0(β1)). The
values for µ = µc(0.4) + ε and µ = µc(0.6) + ε are close to 0 in the third quadrant. In
fact, we have z0(α

′
0) = z0(β

′
0) = 0, where α′

0 := (0.4, µc(0.4)) and β ′
0 := (0.6, µc(0.6)).
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In figure 6, the zero z0(α) follows the segment ]−d(0.4), 0−[, goes round 0, then follows
arc ‘c’, whereas the zero z0(β) follows the segment ]−d(0.6), 0−[, goes round 0, then
follows arc ‘a’. We have d(0.4) � 0.14 and d(0.6) � 0.28. Details of the path followed
by the zeros near 0 are not shown.
z1(α1) and z1(β1) are constructed in the same way, but we no longer need to avoid

µc(0.4) and µc(0.6) since the zero does not come to the branch point of f (λ,µ, .) for
these values ofµ. z1(α1) is constructed by following arc ‘b’ whereas z1(β1) is constructed
by following arc ‘d’.

– Variation with respect to λ ( figures 6 and 8). Starting from z0(α1) and z1(α1) obtained
above, we now vary λ from 0.4 to 0.6 and get arcs ‘e’ and ‘f’, respectively, in dotted lines
in figure 6. When extending the variation interval of λ to [0, λ+

c (1)], we get curves ‘E’ and
‘F’ of figure 8. Arcs ‘e’ and ‘f’ are thus respectively parts of ‘E’ and ‘F’. We explained
earlier that we have to give new names to the zeros thus obtained by varying λ since there
may be interchanges z0 ↔ z1; this will occur below in the case µ = 1.2. So let us call
them ξ0(λ, 1) (‘E’ curve) and ξ1(λ, 1) (‘F’ curve). The important point is the following:

• When λ increases from 0.4 to 0.6, that is, in figure 5, when α goes along α1β1, then z0(α)

continuously varies from z0(α1) to z0(β1). In the same way, z1(α) continuously varies
from z1(α1) to z1(β1).

The change in the notation is therefore superfluous here.
Incidentally, let us note the following two points. First, on the F curve ξ0(λ

+
c (1)) = 0

holds, whereas there is nothing special about the point ξ1(λ
+
c (1)). Second,

lim
λ→0

ξ0(λ, 1) = −i lim
λ→0

ξ1(λ, 1) = 1.

(Dotted parts in figures 8 and 9 do not mean anything special.)

(ii) µ0 = 1.2 (figures 7 and 9)

Notation: α2 := (0.4, 1.2) and β2 := (0.6, 1.2). We have λ+
c (1.2) � 1.37.

– Obtaining zi(α2) and zi(β2) by varying µ (bold lines in figure 7)
Same as in the preceding case.

– Variation with respect to λ ( figures 7 and 9)
The principle is the same but the result is different:

• When λ increases from 0.4 to 0.6, that is, in figure 5, when α goes along the segment α2β2,
then ξ0(α) continuously varies from z0(α2) to z1(β2). In the same way, ξ1(α) continuously
varies from z1(α2) to z0(β2).

The change in the notation is therefore essential here. For λ ∈ [0.4, λ∗
1[, ξ(λ,µ) =

z0(λ, µ), whereas for λ ∈ ]λ∗
1, 0.6], ξ(λ,µ) = z1(λ, µ). For λ = λ∗

1, z0 and z1 are not
defined, because of the ambiguity in choosing the arc defining z0(λ

∗
1, µ) at points µ > µ∗

1.
z0(λ

∗
1 − 0, µ) and z1(λ

∗
1 + 0, µ) are equal.

The preceding result may also be stated in the following terms:
In (C\{0}2)\(Sc ∪ �∗), let us call γ the path α0α

′
0α1α2β2 where it is understood that

γ goes round α′
0, as has been indicated before, and γ ′ the path α0β0β

′
0β1β2 with the same

precaution at point β ′
0. The difference between the two paths γ and γ ′ is shown graphically

in figure 5. They are not homotopic in (C\{0}2)\(Sc ∪�∗).
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Figure 10. Values of (Re z′0(0.4, µ), Im z
′
0(0.4, µ)) for µ ∈ [ε, µc(0.4)− ε].

-0.26 -0.24 -0.22 -0.18 -0.16 -0.14

-0.2

-0.15

-0.1

-0.05

Figure 11. Values of (Re z0,+(0.4, µ), Im z0,+(0.4, µ)) for µ ∈ [ε, µc(0.4)− ε].

Proposition 4 (Multivaluedness of the resonance dependence on the parameters λ,µ). The
two paths γ and γ ′ define two different analytic continuations for each of z0(0.4, 0+) and
z1(0.4, 0+). For z0(0.4, 0+), the values obtained are respectively z1(0.6, 1.2) for γ (path
[−d(0.4), 0[ ‘c f’ in figure 7) and z0(0.6, 1.2) for γ ′ (path [ −d(0.6), 0[ ‘a’). For z1(0.4, 0+),
they are z0(0.6, 1.2), for γ (path ‘b e’ in figure 7) and z1(0.6, 1.2) for γ ′ (path ‘d’).

Thus α∗
1 := (λ∗

1, µ
∗
1) appears as a branch point for the multivalued function that the two

zeros z0 and z1 of F(α, .) define. The order of the branching is 2.

That the two zeros z0 and z1 may interchange has the important consequence that we must
be very cautious in giving each of the resonances a name. This is particularly true when we
want to compare the resonances to what is known from the perturbative approach, which only
takes into account variation with respect to the λ parameter. This point will be discussed in
section 4.2.

In figures 10 and 11, we present two other zeros of f̂ . They could be obtained from the
preceding ones through analytic continuations. In fact, the function F with an infinite number
of branches has an infinite number of zeros but all those considered in the paper are in one
unique sheet.

Figure 10 describes a zero that was denoted by z′0(λ, µ) in [13]. Here λ = 0.4 and µ
varies in ]0, µc(0.4)] with

lim
µ→0

z′0(0.4, µ) = 0 and lim
µ→µc(0.4)

z′0(0.4, µ) = 0.
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Figure 12. Zeros z′0 and z0,+, for u = 1 − i, λ = 0.4 < λ∗
2 and µ ∈ ]0, µc(0.4)].

If this zero is followed beyond µc(0.4), µ going round this point, then it enters the third sheet
of f , that is R+ is crossed twice clockwise.

Figure 11 also describes a zero of f̂ . We note that f , on one hand, and f+, its continuation
after R+   has been crossed once clockwise, on the other, take close values at the same point if
µ is small. They are equal if µ = 0. Starting with z0(λ) = −d(λ), which is a zero for µ =
0, we get two different zeros depending on whether it is f or f+ that is considered. z0 is the
zero for f ; the zero for f+ was denoted by z0,+ in [13]. It is this latter case that is shown in
figure 11.

Up to now we could not find a value λ∗
2 of λ for which the two curves of figures 10 and 11

would touch at a point z∗2 for a certain µ = µ∗
2. Then (λ∗

2, µ
∗
2, z

∗
2) would have been a solution

for (�).
In contrast, in the case u = 1 − i, such a point does exist. We have seen numerically that

this point exists for u = x − i when x > 0.65. This second solution z∗2 seems to become large
when x approaches 0.62; this point could be investigated. In the following section, we shortly
present the case u = 1 − i so as to show how all the zeros of F(λ,µ, .) may be linked.

3.3. Another example of a function g (poles at 1 ± i)

Let us give a brief description of the situation in this case where two singular points are present.
The singular point (λ∗

1, µ
∗
1, z

∗
1) we found in the case u = −i is displaced; the new values

are approximately

λ∗
1 = 0.246 µ∗

1 = 0.720 z∗1 = 0.925 − 0.281i.

The second solution for (�) is approximately

λ∗
2 = 0.558 µ∗

2 = 0.085 z∗2 = −0.070 − 0.089i.

For λ = λ∗
2, it is the two arcs corresponding to the zeros z′0(λ, .) and z0,+(λ, .), for

µ ∈ ]0, µc(λ)], which touch at z∗2 for µ = µ∗
2. When λ increases beyond λ∗

2, a qualitative
change in the curves occurs, and we change from figure 12 for λ < λ∗

2 to figure 13 for λ > λ∗
2.

Here too, (λ∗
2, µ

∗
2) is a branch point, but for two determinations of the unique analytic function

that z′0(., .) and z0,+(., .) define.
In the neighbourhood of λ = λ∗

1, the same thing as for u = i occurs. Finally, according
to the position of λ with respect to the two singular points λ∗

1 and λ∗
2, we get the three kinds of

pictures shown in figure 1 for the zeros of f̂ .
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Figure 13. Zeros z′0 and z0,+, for u = 1 − i, λ = 0.6 > λ∗
2 and µ ∈ ]0, µc(0.6)].

When looking at this figure, we can say that, given λ and µ, we have three zeros if
µ > µc(λ), and four if µ < µc(λ), for the unique determination f̂ of F. The fourth zero is
likely to go into the third sheet for µ > µc(λ).

It has been possible to give each zero a name because we considered a particular path in
C

2 such that the different kinds of zeros never coincide. But we saw in the (u = −i)-case that
the denominations cannot be kept if the coupling constant is to be varied.

For completeness, we now come back to our first example, u = −i and describe in
sections 3.4 and 3.5 some other branch points. We consider the singularities of the zeros
obtained when either µ or λ is fixed at an arbitrary real value, different from the preceding
‘absolute’ singular values µ∗

i and λ∗
i . Even though we do not have any physical interpretation

for the complex singular values λ∗
i (µ) and µ∗

i (λ), this may help in understanding the structure
of the zeros.

3.4. The case where µ is fixed at a real positive value; branch points in the λ complex plane

Let us come back to the u = −i case.

3.4.1. A branch point λ∗
1(1). Let µ = 1. A calculation on computer shows that (�) has at

least the solution

λ∗
1(1) = 0.4830 − 0.0314i z∗1(1) = 0.7397 − 0.4458i.

It is a 2-order branch point for the zeros z0 and z1 which interchange when λ goes round that
value. Indeed, let λ = λ∗

1(1) + 0.01 eiθ . When θ varies from 0 to 2π , a machine computation
yields that one of the zeros for λ = λ∗

1(1) + 0.01 is z0(λ
∗
1(1) + 0.01, 1) = 0.650 − 0.381i for

θ = 0 and changes to 0.838 − 0.509i when θ = 2π . In the same way, the latter changes into
the former when θ varies from 0 to 2π . The notation of these zeros is of course tricky.

3.4.2. The branch point λ+
c (1). There are also singularities in λ for λ2 = C−1µ, that is, if

µ = 1 for λ = λ+
c (1) � ±1.253, since one of the zeros of F(λ,µ, .) comes to 0, the branch

point of this function. It is the critical coupling constant of [16]. Let us consider a path around
λ+
c (1). Note that λ+

c (1) > λ
∗
1. Let λ = 1.25 − 0.05 eiθ with θ varying from 0 to 2π . The

variation of the zeros with µ, for λ = 1.2 or λ = 1.3, is a figure 4-type variation for z0 and z1

and a figure 11-type one for z0,+. For λ = 1.2 (and µ = 1), the three zeros have the following
values:

z0,+ = −1.48 − 1.32i z0 = 0.0316 − 0.0021i z1 = 2.02 − 0.86i.

The zero we denoted by z′0 does not appear here because it is not in the same sheet.
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After one complete turn, as regards z1, we get back to the initial value; the same for z0,+.
In contrast, z0(1.2, 1) changes first into a zero of f when θ reaches a certain value; then it
takes a real negative value for λ = 1.3, goes into the lower half-plane and finally becomes
a zero of f− for θ = 2π . (f− is the continuation of f in C\R

+, from the lower half-plane,
crossing R+ once anti-clockwise.)

3.4.3. The singularity at λ = 0. We will not tackle this problem in this paper.

3.5. The case where λ is fixed at a real positive value; branch points in the µ complex plane

3.5.1. A branch point µ∗
1(λ). For λ = 0.4, for instance, (�) has the solution

µ∗
1(0.4) � 0.95 + 0.18i z∗1(0.4) = 0.79 − 0.40i.

Let us determine how the zeros move when µ makes a complete turn around µ∗
1(0.4), for

example, along the path µ = µ∗
1(0.4) + 0.1 eiθ . For θ = 0, z0(0.4, 1.05 + 0.18i) will denote

the zero obtained from z0(0.4, 0) through an analytic continuation which successively follows
the real and imaginary directions. We have z0(0.4, 1.05 + 0.18i) � 0.762 − 0.693i. In the
same way, we define z1(0.4, 1.05 + 0.18i) from z1(0.4, 0) through analytic continuation and
have z1(0.4, 1.05 + 0.18i) � 0.829 − 0.214. When θ changes from 0 to 2π , the two zeros
z0(0.4, 1.05 + 0.18i) and z1(0.4, 1.05 + 0.18i) interchange. Therefore, µ∗

1 is a 2-order branch
point.

3.5.2. The real branch point µc(λ). Let us still assume that λ = 0.4. If µ makes
a complete turn around µc(0.4) � 0.1018, starting from 0.10 and following the path
µ = 0.1020 − 0.0010 e−iθ , then the zero z0(0.4, 0.1) moves continuously towards a value
which can be shown to be z′0(0.4, 0.1010) � (−5.23 − 0.21i)10−4. In turn, z′0(0.4, 0.1010)
changes into a zero of f++, under the same change ofµ. (f++ is the continuation of f in C\R+,
from the upper half-plane, crossing R+ twice clockwise.)

3.5.3. The branch point µ = 0. A complete turn anticlockwise around µ = 0 changes
z0(λ, ε) into z0,+(λ, ε). (See the proof of the lemma.)

4. Physical applications

The principal result of sections 2 and 3 is that there are singular values λ∗
i of the coupling

constant, and µ∗
i of the continuum width. Other values λ+

c (µ) and µc(λ) are also of interest.
Let us look at the role that all these values play in simple physical models. Only one λ∗

i will
be considered in what follows.

4.1. Application to models in electrodynamics

Here, the coupling constant is fixed. In the first model, we will see that it lies below the
critical λ∗ and can be either above or below λ+

c (µ). This latter value is itself above or below
λ∗, depending on µ.

4.1.1. A model with a harmonic oscillator in three dimensions coupled to the photon. This
model was presented in [11]. We will describe it briefly below. Although it is a rough model,
it has the interest of yielding a function g which has some physical grounds and on which we
can apply the preceding results.
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4.1.1.1. The model and its function f . The model consists of a harmonic oscillator in three
dimensions coupled to the photon by the interaction −(e/m) �p · �A, with two simplifications
on the Hamiltonian. The first simplification consists in neglecting non-resonant terms (RWA
approximation). The second one consists in neglecting excited states of the oscillator except
for the first one.

The parameter µ naturally appears in the problem (see [11]); it is h̄
Eδ

, where E and δ
are, respectively, the energy-level spacing of the oscillator and the distance characterizing the
spreading in space of the wavefunctions (exponential part in e− 1

2 (
r
δ
)2 ). In terms of the mass

and spring constant of the oscillator, µ = h̄−1/2m3/4k
−1/4
r . The function f which plays a role

in this model is

f (z) = z− 1 − αel

3π

∫ ∞

0

s e− 1
2 s

2

z− h̄
Eδ
s

ds (9)

(see [11]), whereαel is the fine structure constant. Quantities z, s and f are now dimensionless;
the resonance and bound-state energies are obtained by multiplying the zeros of (9) by E. We
note that the function g(s) = √

s
2 e− 1

4 s
2

is neither rational nor bounded at infinity in some
sectors of the complex plane.

Variation of µ is thus natural in this problem. It is obtained by varying the characteristics
of the oscillator, for example δ, or E (see [9] for a recent study of the spectral properties of
related Hamiltonians when E is varied).

Beyond this physical meaning of µ, the result in [11] was the existence of the two zeros

of (9) we denoted here by z0
(√

αel
6π , µ

)
and z1

(√
αel
6π , µ

)
. Again, they were constructed by

varying µ, the coupling constant being, of course, fixed. But in order to relate the results to
known resonances, the coupling constant must be allowed to vary between 0 and αel. When
‘αel’ and µ may vary simultaneously, or successively, preceding considerations have shown
us that we must be careful. The present study allows us to follow the resonances when µ and

λ =
√
αel
6π vary along a nearly arbitrary path, real or complex, and thus to relate z0 or z1 to the

excited state. We are going to show numerically that Ez1
(√

αel
6π , µ

)
, defined by variation in µ,

is indeed the resonance that can be associated with the first excited level of the oscillator, a
resonance defined by variation in α. This holds for arbitrary µ. It was not obvious a priori.

In order to do that, we have to show that z1(α,µ) is a univalued function on [0, αel] ×R+.
We thus have to determine the singular values α∗, µ∗, z∗ and see whether αel < α

∗ holds. This
is done in the following section.

4.1.1.2. A critical width µc(αel), or distance δc = h̄E−1µ−1
c (αel). One has d := −z0(λ) =

1
2 (

√
1 + 4αel/(3π)− 1) � 7.73 × 10−4. In the following discussion, α does not mean (λ, µ)

any more, but αel, in (9), when this constant is allowed to vary. It is real.
We are again confronted with the difficulty of solving (�). Let us do it graphically. A

possible way to proceed is as follows. We start with the graph in C of µ→ z0(α,µ), given in
[11] for α = 1/137 and µ ∈ [1/930, 1/600]. Figure 14 extends this graph of z0(α, .) for µ ∈
[0.003, 1]. The critical valueµc ofµ for which z0 vanishes is αel

3
√

2π
� 0.000 97 (see [11]). The

shape of the curve indicates that we are probably following a curve similar to that of figure 3,
corresponding to the path α′

0, α1, . . . of figure 5. Now let µ = 0.01 be a test point for which
we consider the variation of the zero ξ0(α, 0.01) with α. We obtain a curve which is similar
to that of figure 15. This is the E-type curve in figure 8. This indicates that we may look for
an ‘absolute’ critical value µ∗ beyond 0.01. Let us then have µ increasing step by step, and
look for a transformation of the shape of this curve into the shape of curve ‘E’ in figure 9.
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Figure 14. z0(µ),µ ∈ [0.003, 1], for the 3D oscillator; α = αel � 1/137.
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Figure 15. Variation of the resonance position ξ0(α, 0.01) with the coupling constant α ∈
[0.0005, 0.06].

The result is given in figures 16(a) and (b). The change occurs for a value µ∗ of µ between
1.036 and 1.037. A first estimate of the corresponding value α∗ of α is obtained by following
the displacements of the bump in the curve (a part in which the derivative with respect to α is
large). It is located between 1.2 and 1.5. We can read that z∗ � 0.87 − 0.64i.

A more precise value of α can be obtained by gradually increasing α and determining for
which value z0(α, .) changes from a figure 3-type picture to a figure 4-type picture. We thus
get 1.3780 < α∗ < 1.3781.

In summary, if E = 1, we get the singular triplet

α∗ � 1.378 µ∗ � 1.0368 z∗ � 0.87 − 0.64i.

This µ∗ corresponds to an extension in space of the oscillator wavefunctions δ∗ � 190 nm.
Note that we do not have any physical interpretation of these singular values.

The trajectory of z1(µ) is not very easy to find because it is a figure 3-type trajectory and
it remains very close to 1, a singular point of the integral (1). But some points showing the
shape of the curve are given in figure 17.

Provided that other singular points α∗
i < α

∗ have not escaped us, this numerical study
allows us to relate resonances z0(αel, .) and z1(αel, .), built in [11] or here, to excited states
built perturbatively in α. We had left this point aside in [11]. The result is as follows:

αel being smaller than α∗, variations with respect to µ and α → 0 commute and,
consequently, zeros z0(αel, µ) and z1(αel, µ) interchange for no value of µ, when α goes
to 0. Besides, the former tends to infinity in the lower half-plane, whereas the latter tends to 1.
Thus we get the following which had been left unproved in [11]:
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Figure 16. (a) ξ0(α, 1.036), α ∈ [1, 3] (see section 4.1.1.2); (b) ξ0(α, 1.037), α ∈ [1.2, 1.5] (see
section 4.1.1.2).
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Figure 17. z1(αel, µ) for values of µ in [0.22, 1].

Proposition 5. z1(αel, .) is associated with the first excited level of the decoupled oscillator,
for any value of µ. Another resonance exists, z0(αel, .), which becomes a bound state when µ
becomes smaller than

µc(αel) = αel

3
√

2π
� 0.000 97

that is when δ becomes greater than

δc = h̄

µc(αel)E
� 0.2 mm.



Particle–field resonances as multivalued functions of coupling strength and continuum width 2671

4.1.2. The hydrogen atom coupled to the photon. In [11], we mentioned that when the
hydrogen atom replaces the harmonic oscillator, the simplified model taking only into account
the first among the excited levels involves a rational g. Numerical calculations are, therefore,
easier and it would be interesting to use electromagnetic matrix elements like (8) to calculate
the critical values α∗

i of the coupling constant. However, it is perhaps more important at the
moment to improve the theoretical understanding of a multi-level case, so as to be able to get
more accurate predictions on δc. This could also be useful to get more accurate values of α∗

i

and µ∗
i (see section 4.2) in the strong interaction case.

4.2. Behaviour of the resonances when the coupling increases

Let us now see what conclusion may be drawn as regards an arbitrary coupling strength, and
thus strong interactions. We are going to answer the question we asked in the introduction
about the behaviour of the pole corresponding to the unperturbed excited state as the coupling
increases.

Let us consider either the function g with the pole −i, or that of section 4.1.1. In this
latter case, the coupling constant is no longer fixed at αel. Physically, the model would still
involve a harmonic oscillator, but coupled (by RWA) to a massless boson that would no
longer be the photon. In the present state of our analysis, we can describe the situation as
follows.

If the coupling constant is small enough, the analysis is similar to that performed with
the particular g of section 4.1. In the examples, there is no singular (λ∗

i , µ
∗
i ) in the rectangle

]0, λ∗
1[ × ]0, µ∗

1[ corresponding to a contact of the z0 and z1 curves. Thus, these functions
z0(λ, µ) and z1(λ, µ) are univalued for λ ∈ ]0, λ∗

1[ and µ > 0 (it is agreed that a detour
is needed in the complex µ-plane at (λ, µc(λ)). As a consequence, the notation remains
coherent as λ increases up to λ∗

1, and z1(λ, µ) is indeed associated with the first excited level.
In contrast, z0(λ, µ) is a second resonance.

Let us now have λ increasing to infinity, µ being fixed. We have to distinguish two cases
depending on whether µ is smaller or greater than µ∗

1. We will suppose that λc(µ∗
1) > λ

∗
1.

This was the case for u = −i. We had λc(1) � 1.25, λc(1.2) � 1.37, these two values being
greater than λ∗

1. If we had λc(µ∗
1) > λ

∗
1, and if (λ∗

1, µ
∗
1) corresponded to a multiple point,

curves z0 and z1 would touch on the real negative axis, which is impossible.

Proposition 6. If µ < µ∗
1, whether λc(µ) is smaller than, equal to or greater than λ∗

1, the
result is qualitatively the same: when λ increases from 0, the zero which equals 1 when λ = 0,
the complex point usually associated with the excited level, moves into the complex plane and
goes to infinity (branch F of figure 8); another zero comes from a neighbourhood of −i (or from
infinity in the oscillator case) for λ close to 0, gets to 0 for λ = λc(µ) (branch E of figure 8),
and goes to −∞ on the negative real axis. It corresponds to a matter–radiation bound state.
In both cases, nothing particular happens if λ goes through λ∗

1.
If µ > µ∗

1, it is the zero which coincides with z1(0, µ) = 1 for λ = 0 (be careful
not to call it z1 nor z0 without precaution) which moves in the complex lower half-plane
before going through 0 for λ = λc(µ) (branch E of figure 9) and to −∞ on the negative
real axis. The one coming from −i (or from infinity) remains outside the reals (branch F of
figure 9).

To show the results in a picture which displays the µ-variation, we will use two notations.

(1) As before, indices 0 and 1 and the notation z0 and z1 will be for zeros constructed from
µ = 0.
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(2) In order to connect with the usual perturbative view, we will temporarily call a resonance
which tends to the unperturbed excited state energy when λ tends to 0 a ‘standard
resonance’ (S). We will call a resonance which does not tend to the unperturbed excited
state energy when λ tends to 0 (and is not the fundamental state with no photon) a ‘non-
standard’ (NS) or non-perturbative resonance. For simplicity, we use the term resonance
even if it is actually a bound state.

With these notations, and using figures 3, 4, 6 and 7, the main result of our study may be
illustrated with the two diagrams in figure 2. λ is fixed either below or above λ∗. The figure
shows the variation of the zeros as µ varies from 0 to a large value. When µ goes to infinity,
the zero close to 1 tends to 1. S or NS indicates the behaviour when λ goes to 0.

Details about the variation with respect to λ are given in figures 8 and 9, for two kinds of
values of µ. The behaviour when λ goes to infinity is not explicit in figure 2.

5. Conclusion

In a simple model with only one ‘excited’ level, where the interaction with the quantum
electromagnetic field is involved, we saw that at least two resonances/bound states do exist.
One is familiar to us and has been called standard. There is at least another one, which we
called non-standard, and which is elsewhere in the complex plane when λ tends to 0, the other
parameter being fixed. In some examples, where g has only one pole in the lower half-plane,
the resonance tends to that pole. If g is e−p2/2, then it goes to infinity.

In this latter case, taken from quantum electrodynamics, if the space extension of the
oscillator states increases beyond 0.2 mm, the present study implies that it is the non-standard
resonance which becomes a bound state.

We get results beyond the electromagnetic interaction case considering the same type
of matter–radiation interaction but with a coupling constant which may be arbitrary. The
behaviour of the standard resonance as the coupling constant varies depends on the width of
the coupling function. There is a critical width. If we choose a particular shape by choosing a
particular g and consider the whole family of µ-dilated functions, we have seen that there are
singular real couples (λ∗, µ∗). In three examples (sections 3.2, 3.3, 4.1.1 and 4.2), depending
on whether µ is greater than µ∗ or not, we have seen two different types of behaviour of the
standard resonance when the coupling constant increases. If µ is greater than µ∗, the standard
resonance changes into a bound state; if µ is smaller, it does not. Small values of µ probably
correspond to large extensions in space of the system coupled to the radiation. These results
should be worth testing in actual circumstances.
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